Time and Processes: Towards Engineering Temporal Requirements

Johann Eder, Marco Franceschetti, Josef Lubas
Alpen-Adria Universität Klagenfurt, Austria
firstname.lastname@aau.at

ICSoft, 6.7.2021
In the **beginning** -

- there are requirements.
WHAT ARE TEMPORAL REQUIREMENTS?
Before you can have a PCR test you have to register at the test centers website.

A COVID PCR test certificate is valid for 72 hours. Access is permitted for up to 72 hours after the PCR Test.

Access is possible for visitors, who received their second vaccination shot more than 21 days ago.
Examples II

A presentation at the conference is 20-25 minutes.

Money transfer between accounts in the EU lasts up to 4 days.

After an online order customers have the right to cancel the order within 2 weeks.
Examples III

The one-time password expires 15 minutes after it was sent to the user

When a wrong password is sent, the account is closed for 30 minutes
Time Failures

• Violation of a temporal constraint

• Consequences
 - Annoyances
 - Penalties
 - Catastrophies

• Difficult or impossible to test
 - Uncertainty
 - Combinatorial explosion
 - Race conditions
Temporal Relations

• **Events:**
 - Before
 - After
 - At the same time

• **Activities:**
 - Before
 - After
 - During
 - While
 - Concurrent with

Before you can have a PCR test you have to register at the test centers website.
Quantitative Requirements: Durations

- Duration of activities:
 - A lecture lasts 90 minutes.

- Minimum and maximum duration:
 - The talk about temporal requirements lasts between 45 and 60 minutes.
Quantitative Requirements: Durations

CONTINGENT DURATIONS
- Not controllable by executor
- Decide when to start
- Observe when it ends
 - Within known interval

NON-CONTINGENT DURATIONS
- Controllable by executor
- Decide when to start
- Choose when it ends
 - Within known interval
 - Any time during execution
Quantitative Requirements: Bounds

- **Lower-bound constraint:**
 - Minimum time gap between events

- **Upper-bound constraint:**
 - Maximum time gap between events

Registration has to be made at least 24 hours before entry.

A COVID-Test certificate must not be older than 72 hours.
Non-functional Temporal Requirements

- Temporal property of a system, which does not influence its function

- Duration
- Availability
- Reaction Time
- Deadline
Functional Requirements

• The definition of the function contains temporal aspects

If the invoice is paid within 7 days, then 2% can be deducted from the amount.

An order can be cancelled with 14 days.
Descriptive Requirements

- Temporal properties of the environment, of „nature“

Bank transfer lasts up to 4 days.

Access is open from 8:00 - 12:00.
Proscriptive Requirements

• Temporal goals to be achieved

The test certificate should be sent within 24 hours.
Classifying Temporal Requirements

<table>
<thead>
<tr>
<th>Relational</th>
<th>Quantitative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controllable</td>
<td>Non-controllable</td>
</tr>
<tr>
<td>(Non-contingent)</td>
<td>(contingent)</td>
</tr>
<tr>
<td>Descriptive</td>
<td>Proscriptive</td>
</tr>
<tr>
<td>Functional</td>
<td>Non-functional</td>
</tr>
</tbody>
</table>
REPRESENTING TEMPORAL REQUIREMENTS
Temporal Logic Representations of Requirements

Source: H. Ma, “A Workflow Model Based on Temporal Logic”, Proc. 8th Int. Conf. Computer Supported Cooperative Work in Design

Workflow WF_Device_Purchase()===[
 %LOC[Role applicant, amanager, ceo, pmanager, shopper;
 Task report, signature, permit, audit, order;
 Timer d1=5;
 Var cost;]
 %STM[
 lb=START->$Olb=s1;
 lb=s1->$O{(applicant, report)}$Olb=s2;
 lb=s2->$O{(amanager, signature)}$Olb=s3;
 lb=s3^(cost>=1000)->
 $O{(ceo, permit)}$Olb=s4;
 lb=s4->$O{(pmanager, audit)}$Olb=s5;
 lb=s5->$O{(shopper, order)}$Olb=s6;
 lb=s6->$Olb=STOP]
]

Traces representation.
Representing Temporal Requirements

A1: Process Order Information
A2: Contact Customer
A3: Complete Order
A4: Prepare Order
A5: Create Receipt
A6: Deliver to Customer

S: Receive Order

C1: Information complete?

no

yes

C1j

P1

P1j

E
Activity Chart with Temporal Constraints
CHECKING TEMPORAL REQUIREMENTS
Conflicting Requirements

- Temporal constraints in conflict
 - Detection
 - Resolution
- Conflicting temporal requirements lead to time failures
Examples for conflicts

• Precedence conflicts:

A <= B, C <= D
D <= A, C = B

• Uncertainty:

Item should be delivered at the customer within 5 days after the order (but after payment is received).

• Dependence on future events:

Remove the milk from the stove 2 minutes before it bowls over
Satisfiability vs Controllability

• **Satisfiability:**
 Is it at all possible to have a temporally correct execution?

• **Controllability:**
 Is it possible to guarantee for a temporally correct execution under all foreseeable circumstances?
Dynamic Controllability

- **Dynamic schedule (execution strategy):**
 - start time of an activity may depend on all variables whose value is smaller

- **Dynamically controllable:**
 - There exists a dynamic schedule (execution strategy) such that all scenarios over the dynamic schedule are valid

Dynamic Controllability ➔ No conflict between constraints
Checking Dynamic Controllability

- **Common approach:**
 1. Encode process into Temporal Constraint Network (TCN)
 - STN / STNU / CSTN / CSTNU / CSTNUD / ...
 2. Apply TCN checking procedures
Modeling Languages and Controllability Check

Temporal Expressiveness

Controllability Check
Temporal Constraint Networks

Matteo Zavatteri, Luca Viganò, Conditional simple temporal networks with uncertainty and decisions, Theoretical Computer Science, Volume 797, 2019, Pages 77-101

STNU example
Massimo Cairo, Romeo Rizzi,
Dynamic controllability of simple temporal networks with uncertainty: Simple rules and fast real-time execution,
Theoretical Computer Science, Volume 797, 2019, Pages 2-16
ENGINEERING TEMPORAL REQUIREMENTS
Temporal Requirements Manager

Tool support for managing temporal requirements:

- Is a set of temporal constraints dynamically controllable?
- Which constraints are in conflict?
- Which is the strongest constraint between 2 events that does not create a conflict?
- Incrementally include temporal requirements and check whether they are in conflict with existing ones.
TRM: Temporal Requirements Manager
TRM Step 1: Conflict identification
TRM Step 2: Conflict resolution
TRM Step 3: Maximum constraint bounds
Mockup Step 4: Correct model
FURTHER ISSUES ...
Challenges: Temporal Data

- Data of type date/timestamp
- History of data
- Data versions
Challenge: Temporal Control Structures

while elapsed ≤ 70

if elapsed ≤ 40

T

F

L [10,20]

V [30,40]

W [10,20]
Challenges: Probabilistic Controllability

- Non-binary property
- In real world applications, risk is accepted and taken
- Probability of time failure in general
- Probability that a particular constraint is violated
 - e.g. risk to deliver product later than promised < 5%
 - e.g. risk to miss train < 10%
 - e.g. risk to miss the flight < 1%
Probabilistic uncertainty

- Distribution function for duration
- Branching probability at XOR splits
- Distribution function for number of iterations

Patient Needs Surgery: 85% of the time NO
15% of the time YES
Conclusions: TIME MATTERS

- Temporal requirements are everywhere
- Temporal constraints are a simple way of representing temporal requirements in activity charts
- Dynamic Controllability is a good definition for „free of conflicts“
- Theory delivers effective checking procedures for conflicting temporal requirements
- Tools support representing and checking temporal requirements