
Software Architects Are Dead!
Long Live Software Architects!

Frank Buschmann
Kevlin Henney

Prologue

Software architecture is...
 The highest level concept of a

system in its environment
 The decisions that you wish you

could get right early on
 The things that are hard and

costly to change
 The important stuff... whatever

that is

If you think good
architecture is
expensive, try bad
architecture.

Brian Foote & Joseph Yoder

Continuous attention to technical
excellence and good design enhances
agility.

Simplicity--the art of maximizing the
amount of work not done--is essential.

The best architectures, requirements,
and designs emerge from self-
organizing teams.

Big Up-Front Design
BUFD

Rough Up-Front Design
RUFD

No Up-Front Design
NUFD

 Assumes
everything is
known or
foreseeable in
advance

 Can create an
illusion the team
knows more than
they actually do

 Poorly adapted to
change

 Danger of analysis
paralysis

 Good when requirements
must be discovered

 Open to continuous change
 Assumes change is cheap
 Failure mode degenerates

to ad hoc tactical decisions

Approaches to Architecture Design

Internet
of ThingsArchitecture

in the Age of
Digitalization

Ecosystems

DevOps

Cyber-Physical
Systems

Microservices

Autonomous Systems

Self-organizing Systems

Self-Learning
Systems

Scaled Agility

Quo Vadis
Software
Architects?

The Fall of
Architectus
Reloadus

Architectus Reloadus is the person who
makes all the important decisions.
The architect does this because a single mind is
needed to ensure a system's conceptual integrity,
and perhaps because the architect doesn't think
that the team members are sufficiently skilled to
make those decisions. Often, such decisions must
be made early on so that everyone else has a plan
to follow.

Martin Fowler
Who needs an architect?

It's expensive to
know everything
up front.

Kolton Andrus

It's expensive to
know everything
up front.

Kolton Andrus

CHAOS RESOLUTION BY AGILE VERSUS WATERFALL

SIZE METHOD SUCCESSFUL CHALLENGED FAILED

All Size Projects
Agile 39% 52% 9%

Waterfall 11% 60% 29%

The resolution of all software projects from FY 2011 — 2015 within the new CHAOS database segmented by agile
processes and the waterfall approach. The total number of software projects is over 10,000.

Source: Standish Group 2015 Chaos Report — Q&A with Jennifer Lynch (infoQ)

Architectus
Oryzus

Architectus Oryzus is a different kind of
animal who is very aware of what's
going on in the project,
looking out for important issues and tackling them
before they become a serious problem. His most
important activity is to mentor the development
team, to raise their level so that they can take on
more complex issues.

Martin Fowler
Who needs an architect?

Architecture is a
hypothesis, that needs
to be proven by
implementation and
measurement.

Tom Gilb

Source: Standish Group 2015 Chaos Report - Q&A with Jennifer Lynch (infoQ)

Low risk
of failure

Medium risk
of failure

High risk
of failure

Fit for the digital future?
 Architectus Oryzus is well adapted for

projects of small to medium complexity, and
those with a developmental focus

 Yet even small projects can be complex,
especially in an IoT or digitalization context

 Confounding complexities exist outside of
development

 Complex projects more likely to fail

 Early failure and fast restart is not always an
option

 Emergent design is not always fast enough,
changes are not always cheap

Architecture or not architecture?
 A financial services firm updated their high-speed,

algorithmic router that sends orders into the market
 The software was manually deployed on 8 servers —

deployment failed on one server
 Result was a system capable of sending automated,

high-speed orders into the market without tracking
to see if enough orders had been executed

 When going live, the software sent orders into the
market resulting in 4 million transactions against 154
stocks for more than 397 million shares

 The firm realized a $460 million loss in 45 minutes...
and went bankrupt

Source: https://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/

What if such disaster happens here?

Source: Google

Beyond
Architectus

Oryzus

Microservices are becoming the
predominant architectural style
The Microservice architectural style is an approach to
developing a single application as a suite of small,
independently deployable services, each running in its own
process and communicating with lightweight mechanisms.

While there is no precise definition of this architectural style, there
are certain common characteristics around organization,
business capability, automated deployments, intelligence in the
endpoints, and decentralized control of languages and data

Martin Fowler

Large systems can
consist of 500+
microservices!

From: https://blog.appdynamics.com/news/visualizing-and-tracking-your-microservices/

Avoiding a Big Ball
of Microservice
Mud becomes a
priority

From: https://blog.appdynamics.com/news/visualizing-and-tracking-your-microservices/

 Determining the services being called to deliver
application functionality to a specific user is hard

 Documenting and/or visualizing the fluid application
topology is something few have been able to do

 Creating a meaningful blueprint of the services
design is nearly impossible

 Ensuring end-to-end qualities like performance,
security, availability and resilience is a challenge

Be Where Microservices Connect

 Complete, meaningful, role-specific, usable
 Defined contract, managed evolution

The architect’s main territory is between the services, where they
meet, connect and hurt: Interfaces, Interactions, Integration

Interfaces

 End-to-end quality (reliable, fast, scalable, secure, …)
 Task-oriented

 UI integration, data management
 Versioning and release management

Deficiencies in interfaces, interactions and integration tend to show up late:
during system test, roll out and operations – thus their resolution is costly!

Interaction

Integration

You’ll never walk alone

… in the end, the maximum customer value is
going to be in the ecosystem.

How open can we be? How open do we want to
be? How far are we willing to go? …

There’s no way to do this, no way to make this
valuable going halfway!

Jeffrey Immelt, General Electric Chairman and CEO

From linear supply chains to connected,
complex and dynamic value networks

Source: Deloitte analysis

Competition

Developers

Consumers

Technology / Service

Suppliers

Distributors

Competition in balance with co-creation and partner collaboration

C
o-creation / collaboration

Competition

Application Runtime Environment

Application Marketplace

 (OSS) infrastructure services
 Standards

 Vertical applications
 Vertical services

Application
Partners

Technology
Partners

Connect to the development community

 DevOps is a culture, movement or practice that
emphasizes the collaboration and
communication of both software developers and
IT professionals while automating the process of
software delivery and infrastructure changes

 DevOps aims at establishing a culture and
environment where building, testing, and
releasing software, can happen rapidly,
frequently, and more reliably

Wikipedia

You build it, you run it

DevOps is expanding agile
principles beyond the code

Agile Development

Continuous Test & Integration

Continuous Delivery

DevOps

Source: Adapted from collab.net

Connect and integrate Dev and Ops

Consider the design of Dev and Ops environments as important as
the design of the product itself – to balance speed and quality:

 Safety net for developers to run code they built without compromising
system quality and integrity

 Feedback loop for developers and operators to monitor, assess, and
improve system quality for continuous system evolution

4+
Billion
connected

people

25+
Billion
connected
systems

50+
Trillion

Gigabytes of
data

Data Source: International Data Corporation (IDC)

2020

4+
Billion
connected

people

25+
Billion
connected
systems

50+
Trillion
Gigabyte of

data

Data Source: International Data Corporation (IDC)

2020Do you think you can control
the Internet of Things?

Decentralized Operations

Inherently Conflicting, Unknowable,
and Diverse Requirements

Continuous Evolution
and Deployment

Scale: code; users; data managed; connections
among software components; hardware elements

Heterogeneous, Inconsistent,

and Changing Elements

Failure is
the norm

Erosion of User /
System Boundary

Source: Google

Failures must result in systems with degraded
functionality, not in dysfunctional systems

!
!

!

Correct behavior in unforeseen and
emergent situations must be guaranteed
 Unlimited sensor input space
 Unlimited actor output space
 Unexpected environmental

conditions
 Software updates
 Emergent behavior
 Humans in the loop
 “Gaming” systems

?

Connect systems to the Internet of Things
but design for resilience in an uncontrollable world

Real-Time

Resilience

!

Human in the
Loop

Connectivity

Security Safety

Autonomy
(Smart / Intelligent)

Resilience

User experience?

Connect to users by providing
responsive user experience

The user is always right
User flow is important

Form follows function
Content is king

Innovate, not imitate

Speed matters
Access is for everyone

The Rise of
Architectus
Connexus

Digitalization demands a shift in focus
and perspective from software architects

 From solving challenges within system services to full
trust in dev teams that do the right thing

 From mentoring developers to integrating
independent teams from multiple organizations

 From a development-centric view to a lifecycle view
that explicitly includes deployment and operations

 From emergent architecture to a clear architecture
vision and a design for continuous system evolution

 From designing for full control in protected
environments to designing for resilience in an
uncontrollable, ever-changing world

Software architects must balance
inherently conflicting design forces

Scaled Agility and
Continuous Evolution

versus

End-To-End Quality and
Operational Resilience

From monolithic
architectures

ESB

DBMS

UI
UI UI UI UI

DBMS DBMS DBMS DBMS

To microservice
architectures

From designing
within systems

To designing
between microservices

ESB

DBMS

UI

public bool foo()
{

return bar();
}

public bool foo()
{

return bar();
}

Dev
Teams

Dev
Community

Operations
End

Users

Agility
Stability

Connection
Usability
People

Architectus Connexus is a child of the
digitalization age.
 Develops an architectural vision of the system that

balances the need for continuous innovation with
the need for operational quality and usability.

 Gives up developmental control by empowering
an ecosystem of development teams to decide on
the system's realization without corrupting its
resilience in an IoT environment.

 Connects the people and organizations who
develop, operate and use the system.

Epilogue

Architect?

Coach

Observer
Communicator

Experimenter

Listener

Developer

Mentor

Advocate

Negotiator

Tour guide

Connector

Software Architects Are Dead!
Long Live Software Architects!

	Foliennummer 1
	Foliennummer 2
	Foliennummer 3
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Foliennummer 12
	Foliennummer 13
	Foliennummer 14
	Foliennummer 15
	Foliennummer 16
	Foliennummer 21
	Foliennummer 22
	Foliennummer 23
	Foliennummer 24
	Foliennummer 25
	Foliennummer 28
	Foliennummer 30
	Foliennummer 31
	Foliennummer 32
	Foliennummer 33
	Foliennummer 34
	Foliennummer 35
	Foliennummer 36
	Foliennummer 37
	Foliennummer 38
	Foliennummer 39
	Foliennummer 40
	Foliennummer 41
	Foliennummer 42
	Foliennummer 43
	Foliennummer 44
	Foliennummer 45
	Foliennummer 46
	Foliennummer 47
	Foliennummer 48
	Foliennummer 49
	Foliennummer 50
	Foliennummer 52
	Foliennummer 53
	Foliennummer 54
	Foliennummer 55
	Foliennummer 56
	Foliennummer 57
	Foliennummer 58
	Foliennummer 59
	Foliennummer 60
	Foliennummer 61

