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BACKGROUND





HIGH THROUGHPUT SEQUENCING COST PER GENOME, 2001-2015



Why Genomic Computing?

• Technological revolution for DNA Sequencing

• Availability of huge repositories of open data

• It is now possible to explain how DNA inheritance 

and replication cause/influence many diseases, 

leading to personalized medicine

• Many biological and clinical problems need data 

exploration, retrieval and analyisis

• Genomic datasets are «big data»



Rough Terms and Sizes
Abstract Data

• The human DNA sequence is a string of 3.2 billions of 

base pairs, encoding adenine (A), cytosine (C), guanine 

(G), and thymine (T); size = 800Mbyte.

Raw/Aligned Data 

• Data is produced as «reads», overapping subportions of 

the genome, and then aligned to a reference genome, 

with emphsis on quality; size = 200GByte. 

Processed Data:

• But each of us has «just» 4.1M to 5M mutations, mostly 

single substitutions/insertions/deletions; size = 125Mbyte 



(Epi)Genomic Signals:

Mutations - Espressions - Peaks



Expression 

(RNA-seq)

Peaks

(Chip-seq)

Mutations

Genes

Signals on the Genome Browser



Source: http://blog.goldenhelix.com/grudy/a-hitchhiker%E2%80%99s-guide-to-next-generation-sequencing-part-2/

BIG DATA ANALYSIS WITH NEXT GENERATION SEQUENCING

• Analysis of hardware generated data, machine stats, etc.

• Production of sequence reads and quality scores

• QA filtering on raw reads

• Alignment/Assembly of reads

• QA and variant calling on aligned reads

• QA/QC of variant calls

Tertiary

analysis

• Annotation and filtering of variants

• Data aggregation and multi-sample processing

• Association analysis

• Population structure analysis

• Genome browser driven exploratory analysis

Primary 

analysis

Secondary 

analysis



A VIEW OF BIG DATA ANALYSIS PLAYERS

PRIMARY 

ANALYSIS

TERTIARY 

ANALYSIS
SECONDARY

ANALYSIS

• FireCloud

(Broad Inst.)

• Paradigm4 

(Spinoff)

• GMQL/Geco

(PoliMi)

• DeepBlue

(Blueprint)



Which problems can we solve?

• Which cancer types can be explained by disregulation of 

the tri-dimensional structure of the genome?

• Which co-occurring (killer) mutations cause the death of a 

cell in given tumors?

• Which transcription factors (dimers) always occur 

together?

• How can we assign predominant functions to each portion 

of the genome?



A Short Story

of Genomic

Computing in

my Group at

Politecnico

(DEIB)

September 2012: Meeting at IEO-IIT; start of collaboration with 

prof. Pier Giuseppe Pelicci et. Al.

March 2013 – current: Big group with: 
• Scientists: Daniele Braga, Alessandro Campi, Marco Masseroli, Matteo Matteucci, 

Giampaolo Cugola, Heiko Muller 

• PhD students: Anna Bernasconi ,Vahid Jalili, Fernando Palluzzi, Stefano Perna, Eirini 

Stamoulakatou, Yuryi Vaskin,  Francesco Venco

• Master strudents: Michele Bertoni, Ilaria Buonagurio, Simone Cattani, Andrea Gulino, 

Luca Nanni, Ilaria Raciti, 

• Post-docs: Arif Canakoglu, Abdulrahaman Kaitoua, Pietro Pinoli

March 2013 – Feb. 2016: PRIN Project Gendata 2020 

(with: Math@PoliMi, Sapienza, Roma3, Unibo, PoliTo, UniBg, StataleMi, 

UniSal, UniCal)

January 2015: first release of GMQL V1 (at Polimi and IEO-IIT)

March 2015: first accepted paper on BioInformatics

April 2016: GMQL V2 installed at CINECA

September 2106: kick-off advanced grant ERC 

«Data-driven Genomic Computing» 



DATA MODEL



Tumor_type = brca

Patient_age = 75
0.1 0.6

Tumor_type = brca

Patient_age = 63

Sex = Female
0.5 0

Tumor_type = brca

Patient_age = 750.1 0 0.8 0.1

METADATA

GENOMIC DATA MODEL

REGIONS



MODEL RATIONALE

REGIONS

Meta-data are arbitrary attribute-value 

pairs, independent from any 

standardization attempt.                  

They trace the data provenance, 

including biological and clinical aspects

Regions of the model describe processed 

data, e.g. mutations, expression or 

regulation; they have a schema, with 5 

common attributes (ID, CHR, LEFT, RIGHT, 

STRAND) and then arbitrary typed attributes. 

They achieve interoperability across a 

plethora of data formats

METADATA

SAMPLE AND DATASET

Every sample corresponds to an «experiment», with an ID.

Every dataset is a named collection of samples with the same schema.



Mutations (DNA-seq)

(id, (chr,start,stop,strand), 

(A,G,C,T,del,ins,inserted,ambig,Max,Error,A2T,A2C,A2G,C2A,C2G,C2T))

(1, (chr1, 917179, 917180,*), (0,0,0,0,1,0,’.','.',0,0,0,0,0,0,0,0))

(1, (chr1, 917179, 917179,*), (0,0,0,0,0,1,G,'.',0,0,0,0,0,0,0,0))

GENOMIC DATA MODEL

Expression (RNA-seq)

(id, ((chr,start,stop,strand), (source,type,score,frame,geneID,transcriptID,RPKM1,RPKM2,iIDR))

(1, (chr8, 101960824, 101964847,-), ('GencodeV10', 'transcript', 0.026615, NULL, 'ENSG00000164924.11', 

'ENST00000418997.1', 0.209968, 0.193078, 0.058))

Example of schemas 

and instances



Annotations

(id, (chr,start,stop,strand), (proteinID,alignID,type))

(1, (chr1, 11873, 11873, +), ('uc001aaa.3', 'uc001aaa.3', 'cds'))

(1, (chr1, 11873, 12227, +), ('uc001aaa.3', 'uc001aaa.3', 'exon'))

(1, (chr1, 12612, 12721, +), ('uc001aaa.3', 'uc001aaa.3', 'exon'))

(1, (chr1, 13220, 14409, +), ('uc001aaa.3', 'uc001aaa.3', 'exon'))

ChIA-PET 
(denoting 3D genomic loops, head is assembled with coordinates, tail is in the schema)

(id,(chr,headstart,headstop,strand), (loopType, tailChr, tailStart, tailStop, PETcount, pValue, qValue))

(1, (chr1,7385626,7389841,*), ('Inter-Chromosome', chr17, 3081653, 3084755, 50, 0.0, 0.0)

GENOMIC DATA MODEL

Example of schemas 

and instances



QUERY 

LANGUAGE



QUERY 

LANGUAGE
SEQUENCE OF 

ALGEBRAIC 

OPERATIONS

High-level, declarative operations which operate 

both on regions and meta-data      

→ each operation progressively builds the regions 

and meta-data of its result

Inspired by Pig Latin and targeted towards cloud 

computing

CLASSIC RELATIONAL OPERATIONS

SELECT 

PROJECT 

GROUP 

ORDER/TOP

DOMAIN-SPECIFIC GENOMIC OPERATIONS 

COVER 

GENOMETRIC JOIN

MAP

UTILITIES

LOAD, MATERIALIZE

UNION

DIFFERENCE

MERGE

QUERY LANGUAGE



QUERY 

LANGUAGE

OVERVIEW

PROMS = SELECT(annotationType == 'promoter') ANNOTATIONS;

PEAKS = SELECT(dataType == 'ChipSeq') ENCODE;

RESULT = MAP(peak_count AS COUNT) PROMS PEAKS;

# Samples # Regions Join(dist <0) Map(COUNT) Cover

10 ~1.9 M 14.66 sec. 20.29 sec. 19.25 sec.

50 ~8.8 M 23.86 sec. 43.08 sec 46.34 sec.

100 ~17.4 M 35.38 sec 74.43 sec. 79.02 sec.

1000 ~60 M 120.98 sec 473.39 sec 235.22 sec.

Executed over 2,423 ENCODE samples including a total of 

83,899,526 peaks mapped to 131,780 promoters producing as 

result 29 GB of data



Tumor_type = brca

Patient_age = 75
0.1 0.6

0.5 0

0.1 0 0.8 0.1

METADATA SELECTION

Selection of the samples

e.g. select patients younger than 70 years  

QUERY LANGUAGE

Tumor_type = brca

Patient_age = 63

Sex = Female

Tumor_type = brca

Patient_age = 35



REGION SELECTION

Selection of the regions 

e.g. select those regions which have a score greater than 0.5) 

Tumor_type = brca

Patient_age = 75

Tumor_type = brca

Patient_age = 63

Sex = Female

0

Tumor_type = brca

Patient_age = 35
0.8

0.1 0.6

0.5

0.1 0 0.1

QUERY LANGUAGE



Left.feature = transcripts

Right.feature = enhancers

REGION JOIN (GenoMetric)

QUERY LANGUAGE

Join at min-distance:

Associate each region in the former dataset with the closest in the latter.  

feature = transcripts

feature = enhancers

A B

1 2 3

A-1 B-3



Tumor_type = brca

Tumor_grade = g2

Tumor_grade = g3

COVER

Cover(2,ANY)

Find portions of the genome that are covered by at least two regions

Tumor_type = brca

Tumor_grade = g2

Tumor_type = brca

Tumor_grade = g2

Tumor_type = brca

Tumor_grade = g3

QUERY LANGUAGE

2            3         2           1      2    1              1 



MAP

Region map

Compute an aggregate function (e.g. COUNT) on al the regions intersecting the reference

annotation = genes

provider = RefSeq

feature = SNP

A

Left annotation = genes

Left provider = RefSeq

Right features = SNP

2 4

B

QUERY LANGUAGE



QUERY LANGUAGE

Map operations, through 

reference regions R, extract 

and standardize genomic 

features 

Genomic Space Abstraction

MAP

HEAT MAP:

Visualization of the genome 

space using intensity of colors

GENOMIC SPACE:

Simplified structured outcome, 

ideal format for data analysis



QUERY LANGUAGE

GENOMIC SPACE
represents adjacency 

matrices, i.e. networks

Genomic Space Abstraction

Network analysis 

methods (e.g. page   

rank, hub/authority,  

community detection,..)



APPLICATIONS



Expression 

(RNA-seq)

Peaks

(Chip-seq)

Mutations

Genes

Example of biological query
Given three replicas of a Chip.Seq experiment, extract high-confidence 

regions into one sample, identify which of these regions overlap with 

given genes, and for each resulting region count ICG mutations and 

select regions with at least one mutation.



Video

http://www.bioinformatics.deib.polimi.it/geco/?video



BIOLOGICAL 

RESEARCH

joint work with

IEO (Pier 

Giuseppe 

Pelicci’s group) 

and Harvard 

IACS (Pavlos 

Protopapas) 



3D Structure and tumors

GENES = SELECT(tissue=="cortex") GTEx;

J1 = SELECT(cell=="imr90") TADs;

J2 = SELECT(cell=="gm12878") TADs;

PAIRS = JOIN(distance < 500000; CONTIG) 

GENES GENES;

MAPPING_t = MAP() PAIRS J1;

MAPPING = MAP() MAPPING_t J2;

SAME = SELECT(left.id < right.id and L1.count == 0 

and L2.count == 0) MAPPING;

CROSS = SELECT(left.id < right.id and L1.count > 1 

and L2.count > 1) MAPPING;

http://left.id/
http://right.id/
http://left.id/
http://right.id/


Same/cross gene activity correlations

in normal vs tumor cells



Significantly disregulated

junctions in tumors 



Other Biological Problems
- DNA Sequencing of Microbioma in Cystic Fibrosis patients 

who are colonized with mycobacterium abscessus [with D. 

Costantini and L. Cariati (Policlinico Milano), Giovanni 

Porta (U. Insubria), Rita Rossi Colwell (U. Maryland)].

- Identification of TFs that co-regulate genes in rigid and 

compact pairs (dimers) [with Limsoon Wong (NUS 

Singapore)]. 

- Search for “Killer Mutations” (pairs of mutations which 

cannot be present together as they cause the death of the 

cell [with Limsoon Wong (NUS Singapore)].

- Identification of TFs that co-occur with TEAD4 binding 

sites [with Stefano Campaner (IEO-IIT)].

- Detect DNA areas where multiple TFs bind (dense TF 

binding regions) [with Stefano Campaner (IEO-IIT)].



ARCHITECTURE



GMQL Implementation / V2

ARCHITECTURE

• A different approach, with language-independent intermediate representation

• Targeting also usability from within R and Galaxy

SEMANTICS

SYNTAX

IMPLEMENTATION

GMQL
Embedded 

GMQL

Logical

GMQL

Flink SciDBSpark API TO IR

IR



ARCHITECTURE

GMQL implementation, V2

New optimization options

ImplementationOptimized IRIRGMQL

Query 

Optimizer
Low level  

Optimizer

1) Node reordering / deletion

2) Select condition refinement

1) Alternative algorithms

2) Parallelism tuning

3) Data partitioning

4) Caching



ARCHITECTURE

Meta-first

ReadMD

StoreMD

ReadRD

StoreRD



VISION



Short-Term

Goals

DESCRIPTIVE STATISTICS

Provide automatic summarization describing result 

samples; integrate classic significance or 

regression tests within the query capabilities.

METADATA TRACING

Develop methods and tools supporting users in 

explaining observed query outputs. The study of 

data causality is based on determining data 

lineage (or provenance), especially relevant with 

queries over multiple sources

PATTERN-BASED REGION 

EXTRACTION

Define complex patterns of genomic features 

enabling the formulation of similarity queries (e.g., 

distal patterns, or using the notions of 

similar/dense/sparse genomic regions).



Mid-Term

Goals

INTEGRATED REPOSITORY 

Produce an integrated repository with semantically 

well-defined and compatible metadata, by 

integrating GDM with ENCODE, TCGA, 1000 

Genomes and Roadmap Epigenomics (and 

possibly other sources).

WEB SERVICES 

Use GMQL for building several public web services 

for solving general-purpose biological problems, 

supporting powerful statistics to indicate the 

significance of query results.

INTERACTION NETWORKS, MACHINE 

LEARNING, DEEP LEARNING

Provide automatic interpretation of query results as 

interaction networks or build tight integration with 

data analysis methods, e.g., based upon machine 

learning or deep learning.



Long-Term

Goals

SEMANTIC AND FEATURE-BASED 

SEARCH 

Develop semantic metadata search with semantic 

query expansion (leveraging on available 

ontologies e.g., OBO, UMLS) and region-based 

search patterns. Provide results in ranking order 

(as in classic search engines). 

GENOMIC RECOMMENDERS

Trace query histories and build recommending 

systems for the “best” ways of solving genomic 

problems. 

INTERNET OF GENOMES

Use GMQL as a basis for simple interaction 

protocols for: 

• Requesting information about remote datasets, 

using both metadata and region schemas

• Sending a query and obtain data about its 

compilation, (including also estimates of the data 

sizes)

• Launching execution and then controlling the 

staging resources and of communication load



Website: 

http://www.bioinformatics.deib.polimi.it/geco/



COMPUTER SCIENCE COLLABORATIONS

• Roma1 University (Javier Fernandez, Maurizio 

Lenzerini): Ontology-based meta-data 

augmentation and query rewrite.

• Roma3 University (Emanuel Weitschek, Paolo 

Atzeni, Riccardo Torlone): Integration with TCGA. 

• University Bologna (Paolo Ciaccia, Ilaria Bartolini, 

Piero Montanari): Supporting pattern-based 

queries from the genome browser.

• Paradigm 4 (Marylin Matz, Mike Stonebraker): 

SciDB Implementation.


