
The DAO of
Parallel Software Construction

Armin Größlinger
Department of Informatics and Mathematics

University of Passau

ICSOFT 2013

Reykjavík, Iceland
2013-07-30

2

The Need for Parallel Software

We are going from “Moores” to “Cores”

3

The Need for Parallel Software

We are going from “Moores” to “Cores”

New applications:

speech recognition real-time image &
video processing

simulation

online data
analysis

4

D A O

In this talk, I will argue to use a

● Domain-specific approach,

● Analysis of the problem and domain parameters, and

● Optimization using automated techniques

to construct parallel programs.

(In addition, “DAO” matches syntactically with the main
concept of daoist philosophy; therefore, there are a few
quotes on the slides, mainly from the Dao De Jing (DDJ).)

5

Today's Supercomputers

Tianhe-2 (China)
3.120.000 Cores
33 PetaFLOPS
17.8 MW

Titan (US)
560.640 Cores
17.6 PetaFLOPS

JUQEEN (Germany)
458.752 Cores
5 PetaFLOPS

6

GPUs and Accelerators

Graphics processors (GPUs) and dedicated accelerators

– deliver 1-10 TeraFLOPS for 100-10.000 $

– achieve ≥20 GigaFLOPS per Watt

7

Heterogeneous and Reconfigurable Hardware

● Heterogeneous hardware is becoming mainstream

● Even reconfigurable hardware

8

Hardware Diversity

“The more you experience, the less you know.” (DDJ, Sec. 47)

Performance is not portable from
one architecture to another.

9

Hardware Diversity

“The more you experience, the less you know.” (DDJ, Sec. 47)

Performance is not portable from
one architecture to another.

4 threads 3 threads

CPU GPU

10

Hardware Diversity

“The more you experience, the less you know.” (DDJ, Sec. 47)

Performance is not portable from
one architecture to another.

4 threads 3 threads

CPU GPU

Complex rules for performance, e.g.:
Alignment is good for performance...

11

Hardware Diversity

“The more you experience, the less you know.” (DDJ, Sec. 47)

… except when mis-alignment is better.

Performance is not portable from
one architecture to another.

4 threads 3 threads

CPU GPU

Complex rules for performance, e.g.:
Alignment is good for performance...

12

Hardware Diversity

“The more you experience, the less you know.” (DDJ, Sec. 47)

Our experience: do not trust benchmarks
 too many “random” effects on today's processors→

… except when mis-alignment is better.

Performance is not portable from
one architecture to another.

4 threads 3 threads

CPU GPU

Complex rules for performance, e.g.:
Alignment is good for performance...

13

Traditional Parallel Programming

● Hire a programmer/student/expert/…
to hack on the parallel code.

● Many hours/days/weeks of work and
performance experiments necessary.

“It is easier to lose a yard than take an inch.” (DDJ, Sec. 69)

14

Traditional Parallel Programming

● Hire a programmer/student/expert/…
to hack on the parallel code.

● Many hours/days/weeks of work and
performance experiments necessary.

...

“It is easier to lose a yard than take an inch.” (DDJ, Sec. 69)

● Need to repeat for every new
hardware platform.

15

How to Make Users Happy

Reduce effort for users/programmers

16

How to Make Users Happy

Reduce effort for users/programmers

“Progress in software engineering can only be
achieved by abstraction“ (SE wisdom)

17

How to Make Users Happy

Reduce effort for users/programmers

“Progress in software engineering can only be
achieved by abstraction“ (SE wisdom)

But: Abstraction and high performance
do not mix a priori.

18

Abstraction

Something simple: Matrix-Matrix-Multiply

Assume A and B are distributed
row-wise in block-cyclical fashion.
Which elements of A and B have to be
sent over the network to compute A·B?

19

Abstraction

Something simple: Matrix-Matrix-Multiply

Assume A and B are distributed
row-wise in block-cyclical fashion.
Which elements of A and B have to be
sent over the network to compute A·B?

Isn't this question quite ridiculous?

20

Abstraction

Something simple: Matrix-Matrix-Multiply

Assume A and B are distributed
row-wise in block-cyclical fashion.
Which elements of A and B have to be
sent over the network to compute A·B?

We do not want to write

 MPI_Datatype elems;
 ...
 for (i=...) {
 for (j=...) {
 MPI_Recv(..., elems, ...);
 for (k=...)
 C[i][j] += ... ;
 }
 }

Isn't this question quite ridiculous?

21

Abstraction

Something simple: Matrix-Matrix-Multiply

Assume A and B are distributed
row-wise in block-cyclical fashion.
Which elements of A and B have to be
sent over the network to compute A·B?

We do not want to write

 MPI_Datatype elems;
 ...
 for (i=...) {
 for (j=...) {
 MPI_Recv(..., elems, ...);
 for (k=...)
 C[i][j] += ... ;
 }
 }

Isn't this question quite ridiculous?

We want to write

 C = A*B;

22

Knowledge for Optimization

● “C=A*B” is possible in High-Performance Fortran (HPF),
but HPF was successful in a niche only.

● Compiler needs more information for aggressive
optimization.

23

Knowledge for Optimization

● “C=A*B” is possible in High-Performance Fortran (HPF),
but HPF was successful in a niche only.

● Compiler needs more information for aggressive
optimization.

● Make the knowledge explicit!

● Are you writing similar codes again and again?
 Don't waste your time hand-optimizing code in a →

general purpose language, use a simple language tailored
to the application problem!

24

Domain-specific Approach

● Design a domain-specific language (DSL).

● Restrict to the required language constructs only.

● DSLs excludes situations bad for the optimizer a priori, e.g.

– no aliasing

– no irregular arrays

– no pointer arithmetic, often no pointers at all

– no statements with side-effects

“The follower of the DAO forgets as much
as he can every day.” (DDJ, Sec. 48)

25

Tool: Spiral

● Generator for linear transforms (DFT, DCT, etc.)

● Uses several DSLs to transform a specification into efficient
code:

– start with a specification, e.g. DFTn for a DFT of a particular
size n

– apply rules which transform the specification step-by-step
● Beats other implementations (libraries and generated codes)

for linear transforms.

M. Püschel, F. Franchetti and Y. Voronenko. Spiral. In D. Padua et al., eds., Encyclopedia of
Parallel Computing, Springer-Verlag, September 2011

26

DSLs in Spiral I

● Rewrite system for algebraic expressions

● Rewrite system to generate loops

27

DSLs in Spiral II

● Rewrite system for parallelism

p: number of processors, μ: cache line size

28

Spiral Big Picture

● Rewrite engines combined with machine learning

● Platform characteristics (“paradigms”) present in rewrite
rules

29

Tool: Pochoir

● Compiler for stencil computations

● DSL embedded in C++

● Example:

Y. Tang, R. Chowdhury, C. Luk, B. Kuszmaul, C. Leiserson, The Pochoir Stencil Compiler. SPAA'11

30

Pochoir: Parallelization

● Main idea: “hyperspace cut” (applied recursively)

● Split iteration domain in

– pieces not requiring communication (black)

– pieces having to wait for other data (grey)
● Execute black pieces first, then grey pieces.

31

Tool: Halide

● DSL embedded into C++ for image processing

● Main characteristic: separation of algorithm and schedule

– algorithm: functional description of computation

– schedule: execution order of operations and storage
locations for computed values

J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, S. Amarasinghe.
Halide: A Language and Compiler for Optimizing Parallelism, Locality, and
Recomputation in Image Processing Pipelines. PLDI 2013

32

Halide Example

● Algorithm

UniformImage in(UInt(8),2);
Var x, y;
Func blurx(x,y) = (in(x-1,y) + in(x,y) + in(x+1,y))/3;
Func out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1))/3;

33

Halide Example

● Algorithm

UniformImage in(UInt(8),2);
Var x, y;
Func blurx(x,y) = (in(x-1,y) + in(x,y) + in(x+1,y))/3;
Func out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1))/3;

● Schedule

out.tile(x, y, xi, yi, 256, 32).vectorize(xi,8).parallel(y);
blurx.chunk(x).vectorize(x,8);

● Finding a schedule:

– few degrees of freedom: “tile”, “vectorize”, etc.

– can be specified by user

– auto-tuning using genetic algorithm

34

Technique: Polyhedral Compilation

P. Feautrier and C. Lengauer. Polyhedron Model. In D. Padua et al., eds.,
Encyclopedia of Parallel Computing, Springer-Verlag, September 2011

35

Polyhedral Compilation

● Developed since 1980s, roots go back to late 1960s.

● Power comes from the use of linear algebra and integer linear
programming.

● Not a DSL but polyhedral representation has powerful laws for
program transformation.

● Slowly comes out from its niche into the “real” world.

A. Simbürger, S. Apel, A. Größlinger, C. Lengauer. The Potential of Polyhedral
Optimization: An Empirical Study. Automated Software Engineering 2013, to appear

36

Why are the Tools/Techniques Successful?

● They are Domain-specific:

– domain is narrow enough to have powerful laws
(algebraic properties)

– domain is broad enough: not every interesting code
has been or will be written by hand

– domain is well understood and has many applications

“Let your community be small, with only a few people” (DDJ, Sec. 80)

37

Why are the Tools/Techniques Shown Successful?

● Analysis of the domain:

– Know the laws of the domain

– Know (almost) all the factors that influence performance
● Analysis of programs in the domain:

– Compiler can extract required knowledge for optimization

– Factors influencing performance are turned into
parameters for an optimization problem

– Automatically discriminate between correct and incorrect
choices for the parameters

38

Why are the Tools/Techniques Shown Successful?

● Optimization

– analytical optimization over several levels
● rewrite systems
● optimization w.r.t. an objective function

– select parameters through
● auto-tuning (e.g., genetic algorithms, sampling)
● machine learning

“[one of the three treasures is] restraint,
by which one finds strength” (DDJ, Sec. 67)

39

Hierarchical DSL Optimization

The Road to Utopia: A Future for Generative
Programming, D. Batory, Domain-Specific
Program Generation, LNCS 3016, Springer 2004

“Water does not flow uphill.” (Daoist saying)

40

Hierarchical DSL Optimization

“You may also go back to
a previous step.”

The Road to Utopia: A Future for Generative
Programming, D. Batory, Domain-Specific
Program Generation, LNCS 3016, Springer 2004

“Water does not flow uphill.” (Daoist saying)

?

41

Optimization w.r.t. the Hardware

42

Optimization w.r.t. the Hardware

Hardware characteristics

Exploit hardware
characteristics on
every level!

43

Optimization w.r.t. the Hardware

Hardware characteristics

Exploit hardware
characteristics on
every level!

What cannot be optimized
analytically becomes a
parameter for auto-tuning or
machine learning.

44

Many, many DSLs?

● DSLs for stencils, dense linear algebra, sparse linear algebra,
image processing, data parallel algorithms, work queues,
parallel containers, …

● Recently many papers with titles like „DSL (and run-time
environment) for ...“ are published.

45

Many, many DSLs?

● DSLs for stencils, dense linear algebra, sparse linear algebra,
image processing, data parallel algorithms, work queues,
parallel containers, …

● Recently many papers with titles like „DSL (and run-time
environment) for ...“ are published.

● But: compilers have bugs, Optimizers have even more bugs

● DSL compilers/optimizers likely to be buggy

● What does one do when things go wrong?

46

Ask for a Second Opinion!

When you are not
satisfied with the work
of a particular expert...

47

Ask for a Second Opinion!

When you are not
satisfied with the work
of a particular expert...

… you ask for a second opinion.

48

Ask for a Second Opinion!

When you are not
satisfied with the work
of a particular expert...

… you ask for a second opinion.

You can do this with compilers, too.

49

Ask for a Second Opinion!

When you are not
satisfied with the work
of a particular expert...

… you ask for a second opinion.

There may be as many “opinions” as “experts”
(just try some implementations of OpenCL).

You can do this with compilers, too.

50

Domain-specific vs. Standards

● Widely-used languages are standardized:

C, C++, Java, OpenMP, MPI, OpenCL, ...

● Standardization takes time.

● We cannot expect several implementations
of a particular DSL to be made.

● Polyhedral compilation:
~25 years to get a stable tool chain with release quality

51

Challenges for Parallel DSL Engineering

● Tools for DSLs support parser, editor, (non-optimizing)
compiler generation.

● Need support for optimizers

– Optimization rules are usually complex

– Abstractions (rewrite rules, etc.) help
● Can we find a “small” set of techniques that allow for the

construction and verification of DSL optimizers?

● Can different DSLs and their optimizers be combined?

52

The DAO of Parallel Software Construction

● Simplify your parallel programming:
restrict to a Domain of the right size

● Analysis: Find right parameters to tune (“small” search
space)

● Optimization of the parameters following the laws of the
domain and the target hardware

● Challenges: tools for optimizers construction and
composition

“The DAO is silent.” (Raymond Smullyan)

	Folie 1
	page2 (1)
	page2 (2)
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	page7 (1)
	page7 (2)
	page7 (3)
	page7 (4)
	page7 (5)
	page8 (1)
	page8 (2)
	page9 (1)
	page9 (2)
	page9 (3)
	page10 (1)
	page10 (2)
	page10 (3)
	page10 (4)
	page11 (1)
	page11 (2)
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	page20 (1)
	page20 (2)
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	page26 (1)
	page27 (1)
	page27 (2)
	page27 (3)
	page28 (1)
	page28 (2)
	page29 (1)
	page29 (2)
	page29 (3)
	page29 (4)
	Folie 50
	Folie 51
	Folie 52

