A Face Detection and Facial Expression Recognition Method

Dr. Nikolaos Bourbakis ATRC Wright State University AIIS

I would like to thank the **ICSDT-10 Organizers for the very** successful meeting, but especially I would like to thank Professors **Tsigritzis and Virvou for inviting me** to share some of my views on Face & Facial Expressions with you

Outline

Introduction

- What-why-how
- Related work
- Proposed methodology

Skin color detection

Face Detection

- FRG Segmentation
- Skin Region Synthesis
- LG Graph

Facial Expression Detection

- Applications
- Conclusions

- What-why-how
- Face detection
- Related work (a brief overview)
- Motivation / Open issues
- Proposed methodology overview

What-Why-How

What

A method for detecting and recognizing facial expressions in real environment

■ Why

Understanding Human Behavior and Emotions (HHI-HMI)

Security

Surveillance

How

Face Detection

Goal

- Detect and locate the face present in the image regardless of
 - Illuminations
 - Background
 - Occlusions
 - Facial pose, orientation and expressions

Why is face detection important?

- Primary step in
 - Face expression detection
 - Vision-based Intelligent HCI Systems
 - Secure Identification and Authentication

Appearance based approaches

Approach

- Face is recognized as a whole
- Face and non-face patterns are learned

Limitations

• Accurate in frontal images with simple background and in well-illuminations

Example - NN Face Detector [Rowley et al., 96, 98]

Template based approaches

Approach

- A standard face pattern is pre-defined .
- Use correlation to locate faces .

Limitations

Difficult to extend to various poses, shapes and scale •

Example - Active Shape / Appearance Model [Cootes & Taylor, 01]

Points

Labelled image

Shape-free patch

8 its

11 its

Converged

Original

Feature based approaches

Approach

- Detect invariant facial features
- Group features into candidate faces and verify them

Limitations

• Difficult to locate features in complex backgrounds and in various illuminations

Example - Elastic Bunch Graph [Wiskott et al., 99]

Multiple Modalities Face-Detection

.Perceptron: Better performance than single

modalities (Yacoub, et. al. IEEE T-NN, 1999)

(b)

(c)

(d)

Accept/Reject User

TABLE I Performance of Single Modalities on Test Sets

	Conf 1			Conf II		
Modality	FA	FR	EER	FA	FR	EER
Face (EGM)	8.08	8.5	8.4	7.67	7.25	7.31
Voice (Spher.)	1.6	5.00	3.25	5.53	4.25	4.75
Voice (HMM)	0.00	1.48	0.75	-	-	-

Open issues

Current face detection methods [FRVT 2003]

- Low performance
 - Outdoor images with uncontrolled illuminations
 - Complex backgrounds
 - Non-frontal views
- Realistic, unavoidable conditions!
- * Need a robust method to satisfactorily detect faces in
 - * varying illuminations
 - * complex backgrounds

The Local-Global Graph Approach

Overview

- Skin detection
- L-G graph Face detection
- L-G graph Expression detection

ANN method for skin-color adaptation

Skin detection results

Skin-color

Skin-color

- Robust against rotations, scaling and partial occlusions
- Challenges ethnicity, Illuminations, background, makeup, motion

Effect of Illumination

- Skin-color varies significantly with different illuminations
- Humans can dynamically adapt to these illumination changes color constancy

Skin color clusters in normalized rg space

Skin detection approach

Overview [Kakumanu-Bourbakis, ICTAI-04]

- Apply color correction
- Estimate the illuminant
 - Train a neural network to estimate the skin color illuminant
 - Apply color correction in LMS cone space
- Detect skin as the achromatic region

Skin detection overview

ANN for skin color adaptation

Multi-layer perceptron network

- Three layered 1600 * 48 * 8 * 2 [Cardei, 00]
- Input
 - Input rg space is divided into 40 * 40 discrete bins
 - Input to the neuron is 1 or 0
- Output
 - Expected <u>rg</u> chromaticity of the image illuminant

Skin detection results

Images from UCD Database [Sharma & Reilly, 2003] + Images collected at WSU

L-G Graph Face Detection

- **FRG Segmentation (**smoothing, edge detection segmentation)
- Facial feature region representation
- Region synthesis
- Face LG Graph
- LG Graph matching
- Face detection results

- Smoothing is usually considered as an important preprocessing step for a segmentation operation that allows a reduction of the noise within an image
- It works as low pass filter by making areas more continuous in their color value
- It destructs, however, edges within an image

- Edge Detection is the important process that preserves the edges and sharp capes
- It works as high pass filter that does not change high frequencies

Face Detection: Segmentation

Motivation

• Skin regions form candidate faces - detect true faces from skin regions

Identify-extract key features using FRG

• Apply Fuzzy Region Growing (FRG) Segmentation [Moghaddamzadeh- Bourbakis, 1993]

Illustrative Example :Original, Smoothed, Edged, Segmented

Fuzzy Region Growing (FRG) Segmentation

- Find big and crisp segments.
- Expand segments based on homogeneity criteria.
- Expand segments based on dichromatic reflection model.
- Expand segments based on degree of farness measure.
- Apply an iterative filter.
- Find medium size segments.
- Expand segments using homogeneity criteria and degree of farness
- Fill in blank regions
- Apply an iterative filter.

Face detection

Identify key features

• Apply Fuzzy Region Growing (FRG) Segmentation

Skin-segmented Image

FRG Segmented Image

Local Graph

Local graph [Bourbakis 1987, 2002]

- Represent the shape by a set of line segments
- Use local graph to encode spatial relationships

i. The individual properties P_j of line Ln_j ,

P_{j-} = {sp(starting point), l(length), d'(orientation), cu(curvature) }
where the index j indicates the appropriate segment.

where, the sub index *ij* means the relationship between line *i* and line *j*.

$$SH = \bigcup \{Ln_j : R_{j,j+1}^c : Ln_{j+1}\}$$

 $= Ln_{1} \cdot R_{1,2}^{c} \cdot Ln_{2} \cdot R_{2,3}^{c} \cdot Ln_{3} \cdot R_{3,4}^{c} \cdot \dots \quad Ln_{n-2} \cdot R_{n-2,n-1}^{c} \cdot Ln_{n-1} \cdot R_{n-1,n}^{c} \cdot Ln_{n}$

Chain Coding or Freeman Coding

 Chain coding encodes the position of a pixel not by its actual Cartesian coordinates, but rather by its relative position to an adjoining pixel.

Chain Coding & Line Segments

Chain Code and Line Segments

String

 $S = k_1(di)k_2(dj)k_3(dn)\dots k_r(dm)$

where di \in {1,12,2,23,3,...,78,8} represent directions, see chain code and ki \in Z

 $S = L_1 R_{12} L_2 R_{23} L_3 \dots L_n R_{n1} L_1$

where Li represents a line segment and Rij the connectivity relationship with the next line segment Rj

Line Graph Generation

$$S = L_1 R_{12}L_2 R_{23}L_3 \dots L_n R_{n1}L_1$$
$$g : L \longrightarrow G$$

where g(Li) = Ni and g(Rij) = aij

Ni = { sp, orientation, length, curvature}

Rij = { connectivity, parallelism, symmetry, etc}

Local Region graph

Example

Region local graph

Region Matching with Wavelets: Geometry Transformation

Single region matching using Wavelets (Yuan-Bourbakis 2002)

A region's border is represented as

$$\boldsymbol{f(t)} = \begin{bmatrix} \boldsymbol{x}(t) \\ \boldsymbol{y}(t) \\ \boldsymbol{1} \end{bmatrix}, t = 1, 2, \dots, m$$

The general form of 2-D geometry transformation matrix is

$$\phi = \begin{bmatrix} \phi_{1,1} & \phi_{1,2} & \phi_{1,3} \\ \phi_{2,1} & \phi_{2,2} & \phi_{2,3} \\ 0 & 0 & 1 \end{bmatrix} \qquad \phi = \begin{bmatrix} rs_{xx} & rs_{yy} & trs_{xx} \\ rs_{yx} & rs_{yx} & trs_{xx} \\ 0 & 0 & 1 \end{bmatrix}$$

 $g(t) = S \cdot M_g \cdot f(t) + T$

$$\begin{bmatrix} x'(t) \\ y'(t) \\ 1 \end{bmatrix} = \begin{bmatrix} rs_{xx} & rs_{xy} & trs_{xx} \\ rs_{yx} & rs_{yx} & trs_{xx} \\ 0 & 0 & 1 \end{bmatrix} \bullet \begin{bmatrix} x(t) \\ y(t) \\ 1 \end{bmatrix}$$

Region Matching: Translation

• we set the scale factors to both x and y directions are the same, i.e. $s \equiv s_x \equiv s_y$, thus.

$$g(t) = s \cdot M_{\theta} \cdot f(t) + T$$

$$F_{cen}(g(t)) = F_{cen}(s \cdot M_{\theta} \cdot f(t) + T)$$

$$= F_{cen}(s \cdot M_{\theta} \cdot f(t)) + F_{cen}(T)$$

$$= F_{cen}(f(t)) + T$$

$$\Rightarrow \qquad T = F_{cen}(g(t)) - F_{cen}(f(t))$$

Translate parameter example

Region Matching: Scale

Momentum is a measure of object's mass distribution.

$$\begin{aligned} \mathcal{M}\mathcal{O}\mathcal{M}' &= \frac{1}{N} \sum_{i=1}^{N} m_i \cdot \left\| p'_i - p'_{centroid} \right\|^2 \\ &= \frac{1}{N} \sum_{i=1}^{N} m_i \cdot \left\| s \cdot p_i - s \cdot p_{centroid} \right\|^2 \\ &= s^2 \cdot \frac{1}{N} \sum_{i=1}^{N} m_i \cdot \left\| p_i - p_{centroid} \right\|^2 \\ &= s^2 \cdot \mathcal{M}\mathcal{O}\mathcal{M} \end{aligned}$$

Scale parameter example

 $\|^2$

Region Matching: Rotation

The rotate matrix *M* is defined as

$$M = \begin{bmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{bmatrix}$$

the rotated curve *f'*(*t*) is computed by

$$f'(t) = \begin{bmatrix} x(t)' \\ y(t)' \\ 1 \end{bmatrix} = M * f(t) = \begin{bmatrix} \cos\phi & -\sin\phi & 0 \\ \sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} x(t) \\ y(t) \\ 1 \end{bmatrix}$$

Open problems are

- Rotate angle
- Point correspondence

Region matching: Lips example

Single region matching using Wavelets (Yuan-Bourbakis 2002)

- Translation
- Scaling
- Rotation

Example of single region matching (model region in blue, object region in red)

Region Synthesis

Synthesis of regions (Bourbakis 1987)

Motivation

- For face detection, need to Identify the key facial regions and their spatial relationships.
- Other regions not necessary!

Region Synthesis steps

- 1. Initialize the first region which is closer to average skin color as the active skin region. The degree of closeness is calculated as the RGB color difference.
- 2. Select the next region which is closer to average skin color. Find the common edge between this region and the active region.
- 3. If a common edge is found, synthesize the current region and the active region. Assign new region to active region.
- 4. If all regions have been processed, region synthesis completes; otherwise go to step 2.

Skin region synthesis

- Merge neighbor regions into a single segment
 - Neighborhood region searching based on *skin-color* similarity
 - Find common edge using local graph

$$L_{1} = Ln_{1}R_{12}^{c}Ln_{2}R_{23}^{c}Ln_{3}R_{34}^{c}...Ln_{n-1}R_{n-1n}^{c}Ln_{n}$$

$$L_{2} = L' n_{1} R_{12}^{c} L' n_{2} R_{23}^{c} L' n_{3} R_{34}^{c} \dots L' n_{m-1} R_{m-1m}^{c} L' n_{m}$$

Region Synthesis

.Relationships among regions

$$shape(R_{12}) = \begin{cases} shape(R_1)shape(R_2), & if REL(R_1, R_2) = contiguous \\ shape(R_1), & if REL(R_1, R_2) = contain \\ shape(R_2), & if REL(R_1, R_2) = contained \\ \phi, & if REL(R_1, R_2) = separate \end{cases}$$

Skin region synthesis

Skin region removal or face-lifting

- Remove skin region Do not consider it further!
- Advantage Simplifies LG graph matching

Skin region synthesis procedure for face lifting for extracting facial features

Skin removal

Global Graph

 The Global graph is a structure that carries inter-region relations. Each node of this graph represents a region, i.e. it contains the respective local graph.

$$GG(I_p) = (P_1 R_{12} P_2) \Phi_{23} (P_1 R_{13} P_3) \dots$$
$$(P_1 R_{1n-1} P_{n-1}) \Phi_{n-1n} (P_1 R_{1n} P_n)$$

The links of this graph represent the relations between regions

Image L-G Graph Comparison

IMAGE -A Image regions and the graph of gravity

 $\begin{array}{l} G(A_{(N1)}) = (N_1 R_{12} N_2) \ \Phi_{23} \left(N_1 R_{13} N_3 \right) \ \Phi_{34} \left(N_1 R_{14} N_4 \right) \ \dots \\ \Phi_{67} \left(N_1 R_{17} N_7 \right) \ \Phi_{78} \left(N_1 R_{18} N_8 \right) \ \Phi_{81} \end{array}$

IMAGE -B Image regions and the graph of gravity

$$\begin{split} G(A_{(N1)}) &= (N_1 R_{12} N_2) \ \Phi_{23} \ (N_1 R_{13} N_3) \ \Phi_{34} \ (N_1 R_{14} N_4) \ \dots \\ & \Phi_{67} \ (N_1 R_{17} N_7) \ \Phi_{78} \ (N_1 R_{18} N_8) \ \Phi_{89} \ (N_1 R_{19} N_9) \ \Phi_{91} \end{split}$$

Comparison A and B 7/8 region relationships same 5/7 angles same

Local-Global (LG) Graph

Image representation with LG Graph (Bourbakis 1987)

- Use Delaunay Triangulation
- Graph edges hold the spatial relationships between facial features
- Graph nodes hold information about key facial features

node = {Centroid(x, y), color/texture, Local - graph(L), size, border}

 $LG = \{NodeSet, EdgeSet\}$

Model face image

Selected facial regions

Local - Global Graph view

Delaunay graph

Potential Region Correspondent Pair (PCRP)

- Node correspondence select regions based on *color similarity*
- Random graph matching is not allowed!

PCRP region selection

Graph similarity - represented by angle

- If the correspondent angles between arcs are similar, the graphs are similar
- Angular similarity

$$SIM_{LG} = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} E(i, j) S_{ANGSIM} (\theta_{ij} - \theta_{i0})$$

SIM_{LG} - *s*imilarity between two graphs

- angle of the edge, E(i, j)

 θ_{jj} base angle

 $heta_{i^0}$ angle similarity function $S_{ANGSIM}\left(\Delta heta
ight)$

 θ_1 θ_2 θ_2 θ_1' θ_2' θ_1' θ_2' θ_1' θ_2' θ_1' θ_1

Δ**θ**

PCRP graphs and angular similarity

LG Graph shape constraint

- Nodes are not just fiduciary points!!
- Use shape from local graph as a similarity constraint

$$SIM_{LG} = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} E(i, j) \cdot S_{ANGSIM} (\theta_{ij} - \theta_{i0}) \cdot Weight(i, j)$$

LG Graph relationship checking

• Relationship similarity (T_{RE}) - Contiguous, Contain, Contained, Separate

$$SIM_{REL} = \prod_{i=1}^{N} \prod_{j=1}^{N} T_{RE}(r_{i,j}, r_{i,j})$$

* LG Graph error

$$ERR_{LG} = (1 - ERR_{rel})x(ERR_{graph} + ERR_{shape})$$

Experimental results

LGG matching

Experimental results

Performance on AR face database [Martinez & Benavante, 1998]

	Proposed method	Chiang & Huang, 2005	
		AR	AR'
Number of faces	240 (30 people *8 images / person)	945	540
Number of correct detections	231	874	511
Number of misses/errors	9	14/66	4/26
Recall rate	96.25	92.48	94.68

Limitations

- Low-image size
- Poor-image qualities
- Profile-views (>45⁰)
- Dependence on Skin detection method

L-G Graph Expression Recognition

- LG Expression models
- Expression recognition
- Results

Basic facial expressions

- Basic six facial expressions [Ekman, 1993, Kanade et al., 2000]
 - Happy, Surprise, Sad, Anger, Disgust and Fear

Нарру

Surprise

Angry

Disgust

Sad

Fear

LG Expression models

Features Considered Expressions	EyeBrowL (LG <u>expr_ebi</u>)	EyeBrowR (LG <u>expr_ebr</u>)	EyeL (LG _{EXPR_EL})	EyeR (LG _{EXPR, BR})	Mouth (LG <u>expr_M</u>)
Happy	-		13		
Surprised	R		()		
Angry	and the second s	and the second s	10		
Sad	The second second	(Jan)	100		
Disgust		ditter -		A starter	
Fear			0	1	

Expression recognition

Steps in expression recognition [Faisel & Luttin, 2003]

- Face detection
- Feature recognition
 - Nodes in LG graph
- Expression recognition
 - Construct LG expression graphs

 $node = \{Centroid(x, y), color/texture, L, size, border, LG_{EXPR1}, ..LG_{EXPRi}\}$

Features used

• Five facial features - eyes, eye-brows, mouth

LG Expression models [Kakumanu-Bourbakis, in press]

Features Considered Expressions	EyeBrowL (LG _{EXPR_EBL})	EyeBrowR (LG _{EXPR_EBR})	EyeL (LG _{EXPR_EL})	EyeR (LG _{EXPR_ER})	$Mouth (LG_{EXPR_M})$
Neutral		Contraction of the second s	A. Marco	Participante and a second	
Happy	A Contraction of the second se	Contraction of the second s	A Company and a company of the compa	All the second	
Angry			Alter and the second	1	
Scream	:///##################################		and the second		

Facial Expression LG graph

Example

Model in GDB

Facial Expressions

Results

Happy = 0.72 Sadness = 0.44 Surprise = 0.77 Disgust = 0.54 Fear = 0.52 Anger = 0.29 Expression = Angry

 $\begin{array}{ll} \mathsf{Happy} &= 0.82\\ \mathsf{Sadness} &= 0.34\\ \mathsf{Surprise} &= 0.78\\ \mathsf{Disgust} &= 0.51\\ \mathsf{Fear} &= 0.53\\ \mathsf{Anger} &= 0.59\\ \textit{Expression} &= \textit{Sad} \end{array}$

Experimental results

Performance on AR database [Martinez & Benavante, 1998]

	Neutral	Нарру	Angry	Scream
Neutral	0.875	0.000	0.125	0.000
Нарру	0.025	0.900	0.025	0.050
Angry	0.200	0.025	0.775	0.000
Scream	0.000	0.050	0.000	0.950

Expression LG Graph Errors					
		Neutral	Нарру	Angry	Scream
	EyeL	0.72	0.53	0.22	0.26
25	EyeR	0.78	0.52	0.27	0.28
	EyeBrowL	0.33	0.34	0.40	0.42
	EyeBrowR	0.37	0.37	0.39	0.42
	Mouth	0.85	0.67	0.82	0.08
	Avg. Error	0.61	0.49	0.42	0.29

Ekfrasis

- Definition: The Ekfrasis language is defined (or generated) by a grammar G {V_N, V_T, PR, S},
- where V_N, is the set of non-terminal symbols and is defined as V_N = {S, T, k, L, X}; V_T is the set of terminal symbols and is defined as V_T = ∑ U { i/i∈Z, } U {#}
- S is the starting symbol of a sentence; T is the symbol for a terminal letter; L is the symbol for the alphabet letters; ∑ is the alphabet; # is the synthesis symbol between letters of the alphabet; and PR is the set of production rules and is defined as
- PR={ S → T; S → S # T; T → L_k ; L → $L_1/L_2/L_3/L_4/L_5/L_6$; kcZ, 1≤k≤6}; and $L_ic\Sigma$,
- where $\sum = \{EBL_i, EBR_i, EL_i, ER_i, N_i, M_i (UL_i, LL_i)\}$

Definition: The Ekfrasis language (L_{EF}) is defined over the G grammar as follows: L_{EF} (G) = { Le_i/Le_i , V_T : S_G→ Le_i }

Expression recognition (II)

LG Expression graphs

- LG expression graphs for each expression to be recognized
- Expression graph matching

SPN

It shows a sequence of facial features (mouth) L-G graphs represent letters from the Ekfrasis language. In this case, individual letters of the alphabet can be used to associate emotional patterns

It shows the SPN association of the L-G graph of the facial features (mouth) extracted and represented from different image frames, and their activation via token (orange, green color. This case is a sequence of facial expressions related with happiness and laughter).Thus, the color token could be a joke or a happy thought or else.

SPN

It shows the transition from the neutral into angry

SPN

SPN transitions

It graphically shows :a) The transition from a facial expression (neutral state) into the next facial one (happy state);

b) The order of transitions of facial expressions (from a "state" into another "state") that take place for the most frequently used facial expressions (neutral, happy, angry, scream);

c)Frames of expressions showing the sequence of transitions in facial expressions.

Applications (II)

Biometrics

Identification & Authentication

Face Verification

Multibiometrics - voice, face, and fingerprint recognition

Applications to People with Disabilities

Emotional Behavior of People with Disabilities

(collaboration with Dr. Esposito, 2003)

- Hearing Impaired Individuals (Koufos project)
- Mentally Retarded Individuals (Anapiros project)
- Visually impaired individuals (Tyflos project)

Summary

Face Detection LG graph Method

LG graph matching

- spatial (graph), shape and relation constraints
- Synthesis of regions
- Compact representation local (facial features) and global (topology) info
- Invariant to translation, rotation and scale (to an extent)

Facial Expression Detection LG graph Method

Applications

Thank you for your patience **QUESTIONS?**